Esempio di prima prova parziale di Matematica Generale, in preparazione alla prova del 22/11/2010

1	Calcolare le derivate prime e seconde delle seguenti funzioni:
	a) $f(x) = sen(x^3 - x);$
	b) $f(x) = \ln(x) \cdot (x^2 + 3x)$.
2	Studiare la seguente funzione: $f(x) = \frac{x^3}{x^2 - 1}$.
3	Determinare gli eventuali punti di massimo/ minimo relativo della funzione: $f(x)=2x^3-3x^5$.
4	a) Calcolare la seguente espressione se possibile: $+\infty \cdot 2((+\infty \cdot -1) - (-3 \cdot (-1 \cdot +\infty)))$ b) Calcolare la seguente funzione nei valori indicati, se possibile: $f(x) = \ln(x^2 - 2x^4)$; $x = -\infty$, $+\infty$, 0.
5	Determinare l'insieme delle soluzioni del seguente sistema di disequazioni e tutte le sue caratteristiche. $\begin{cases} \sqrt{x+4} - y > 0 \\ x^2 + y^2 - 9 \le 0 \end{cases}$
6	Discutere la seguente affermazione in modo sintetico ma esauriente: Una funzione limitata ha sempre punti di massimo e punti di minimo.
7	Dare la definizione di: punti isolati. Discutere la definizione illustrandola con esempi. Si confronti anche con la nozione di punto di accumulazione.