Lezioni di Matematica 1 - I modulo

Luciano Battaia

20 novembre 2008

Infinitesimi

Definizioni

Confronto

Proprietà

Ordine

Algebra

Sostituzione

Infiniti

Infinitesimi

Definizioni

Infinitesimi
Definizioni
Confronto
Proprietà
Ordine
Algebra
Sostituzione

Infiniti

Definizione. Una funzione f si dice infinitesima in x_0 o per x tendente a x_0 (anche ∞) se

$$\lim_{x \to x_0} f(x) = 0.$$

Naturalmente x_0 deve essere di accumulazione per il dominio della funzione.

Definizione. Due funzioni f e g entrambe infinitesime in x_0 si dicono infinitesimi simultanei in x_0 .

Nel seguito avremo quasi sempre a che fare con infinitesimi che siano definitivamente diversi da 0 ovvero tali che esista un intorno di x_0 , privato di x_0 , dove $f(x) \neq 0$. Tutte le volte che sarà necessario sottintenderemo questa ipotesi, che semplifica notevolmente la teoria.

Confronto

Infinitesimi **Definizioni** Confronto **Proprietà** Ordine

Algebra Sostituzione

Infiniti

Definizione. Siano f e g due infinitesimi simultanei in x_0 . Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = l > 0$$

diremo che f e g hanno lo stesso ordine di infinitesimo. Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = 0$$

diremo che f ha ordine di infinitesimo superiore a g o che f è un infinitesimo di ordine superiore a g. Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = +\infty$$

diremo che f ha ordine di infinitesimo inferiore a g o che f è un infinitesimo di ordine inferiore a g. Se nessuna delle tre eventualità si presenta, diremo che f e g sono infinitesimi non confrontabili.

Proprietà

Infinitesimi
Definizioni
Confronto
Proprietà
Ordine
Algebra
Sostituzione

Infiniti

- 1. f ha lo stesso ordine di infinitesimo di f.
- 2. Se f ha lo stesso ordine di g e g ha lo stesso ordine di h, allora f ha lo stesso ordine di h.
- 3. Se f ha ordine superiore a g e g ha ordine superiore a h, allora f ha ordine superiore ad h.
- 4. Se f ha lo stesso ordine di g e g ha ordine superiore a h, allora f ha ordine superiore ad h.

Teorema. Siano f e g due infinitesimi simultanei in x_0 .

- Se f ha ordine inferiore a g, allora $f\pm g$ ha lo stesso ordine di f.
- Se f e g hanno lo stesso ordine, allora $f \pm g$ ha ordine non minore dell'ordine comune.
- Il prodotto $f \cdot g$ ha ordine superiore sia a f che a g.

Ordine

Infinitesimi
Definizioni
Confronto
Proprietà
Ordine
Algebra
Sostituzione

Infiniti

Definizione. Siano f e g infinitesimi simultanei in x_0 . Diremo che f ha ordine $\alpha > 0$ rispetto a g se f e $|g|^{\alpha}$ hanno lo stesso ordine, ovvero se

$$\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|^{\alpha}} = l > 0.$$

L'infinitesimo g si dice anche un *infinitesimo campione*.

Purtroppo non è possibile trovare un infinitesimo campione rispetto a cui confrontare tutti gli altri infinitesimi.

Algebra

Infinitesimi
Definizioni
Confronto
Proprietà
Ordine
Algebra
Sostituzione

Infiniti

Teorema. Siano f e g due infinitesimi simultanei di ordine α e β rispettivamente, rispetto allo stesso campione.

- Se $\alpha < \beta$, $f \pm g$ ha ordine α , sempre rispetto allo stesso campione.
- Se $\alpha = \beta$, $f \pm g$ ha ordine maggiore o uguale ad α .
- Il prodotto $f \cdot g$ ha ordine uguale alla somma $\alpha + \beta$.
- La potenza $|f|^{\gamma}$ ha ordine $\alpha \cdot \gamma$.
- Se $\alpha > \beta$, il quoziente $\frac{f}{g}$ è ancora un infinitesimo e ha ordine $\alpha \beta$.

Sostituzione

Infinitesimi
Definizioni
Confronto
Proprietà
Ordine
Algebra
Sostituzione

Infiniti

Teorema (Principio di sostituzione degli infinitesimi). Siano f_1 , f_2 , g_1 , g_2 infinitesimi simultanei in x_0 , e si supponga che f_2 sia di ordine superiore a f_1 , g_2 sia di ordine superiore a g_1 . Si considerino i due limiti

$$\lim_{x \to x_0} \frac{f_1(x) + f_2(x)}{g_1(x) + g_2(x)}, \quad \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}.$$

Se uno dei due limiti esiste, esiste anche l'altro e sono uguali.

Sostanzialmente il teorema si può enunciare brevemente così: nel calcolo del limite del rapporto di somme di *due* infinitesimi si possono tralasciare a numeratore e denominatore gli infinitesimi di ordine superiore.

Infinitesimi

Infiniti

Definizioni

Confronto

Proprietà

Ordine

Sostituzione

Infiniti

Definizioni

Infinitesimi

Infiniti
Definizioni
Confronto
Proprietà
Ordine

Sostituzione

Definizione. Una funzione f si dice infinita in x_0 o per x tendente a x_0 (anche ∞) se

$$\lim_{x \to x_0} f(x) = \infty \ (\textit{con qualunque segno}) \, .$$

Naturalmente x_0 deve essere di accumulazione per il dominio della funzione.

Definizione. Due funzioni f e g entrambe infinite in x_0 si dicono infiniti simultanei in x_0 .

Confronto

Infinitesimi

Infiniti
Definizioni
Confronto
Proprietà
Ordine
Sostituzione

Definizione. Siano f e g due infiniti simultanei in x_0 . Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = l > 0$$

diremo che f e g hanno lo stesso ordine di infinito. Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = 0$$

diremo che f ha ordine di infinito inferiore a g o che f è un infinito di ordine inferiore a g. Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = +\infty$$

diremo che f ha ordine di infinito superiore a g o che f è un infinito di ordine superiore a g. Se nessuna delle tre eventualità si presenta, diremo che f e g sono infiniti non confrontabili.

Proprietà

Infinitesimi

Infiniti **Definizioni** Confronto **Proprietà** Ordine

Teorema. Siano f e g due infiniti simultanei in x_0 .

- Se f ha ordine superiore a g, allora $f \pm g$ ha lo stesso ordine di f.
- Il prodotto $f \cdot g$ ha ordine superiore sia a f che a g.

Osservazione. Si noti che se f e g hanno lo stesso ordine, può anche succedere che $f \pm g$ non sia più un infinito: per esempio xe 2-x sono infiniti dello stesso ordine a $+\infty$, mentre la loro somma vale 2 che non è più un infinito. Questa differenza tra gli infiniti e gli infinitesimi è legata al fatto che la somma di due infiniti può essere una "forma indeterminata".

Ordine

Infinitesimi

Infiniti **Definizioni**

Confronto **Proprietà** Ordine

Sostituzione

Definizione. Siano f e g infiniti simultanei in x_0 . Diremo che fha ordine $\alpha > 0$ rispetto a g se f e $|g|^{\alpha}$ hanno lo stesso ordine, ovvero se

$$\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|^{\alpha}} = l > 0.$$

L'infinito g si dice anche un *infinito campione*.

Osservazione. Esattamente come per gli infinitesimi, purtroppo non è possibile trovare un infinito campione rispetto a cui confrontare tutti gli altri infiniti e i motivi sono sostanzialmente simili.

Sostituzione

Infinitesimi

Infiniti
Definizioni
Confronto
Proprietà
Ordine
Sostituzione

Teorema (Principio di sostituzione degli infiniti). Siano f_1, f_2, g_1, g_2 infiniti simultanei in x_0 , e si supponga che f_2 sia di ordine inferiore a f_1 , g_2 sia di ordine inferiore a g_1 , oppure che f_2 e g_2 siano funzioni limitate. Si considerino i due limiti

$$\lim_{x \to x_0} \frac{f_1(x) + f_2(x)}{g_1(x) + g_2(x)}, \quad \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}.$$

Se uno dei due limiti esiste, esiste anche l'altro e sono uguali.

Sostanzialmente il teorema si può enunciare brevemente così: nel calcolo del limite del rapporto di somme di *due* infiniti si possono tralasciare a numeratore e denominatore gli infiniti di ordine inferiore.