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The Fundamental Problem of Financial Mathematics

If you have two capitals, or amounts of money, C1 and C2, at the
times t1 and t2, the FP is to establish a rational comparison
criterium between the two in order to decide whether they are
equally valuable or which is more valuable or preferable, with the
obvious assumption that if t1 = t2 than the greatest one is
preferable.
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Suppose you have at a given time (initial time) a capital S0, called
Initial Capital, or Principal, or Present Value, PV .
If you deposit it in a bank, at the end of a unit period of time
(usually a year), you’ll have S0 plus a portion of S0, called the
Interest, I . So the final amount will be S1 = S0 + I . This is also
called the Final Capital, F , or Future Value, FV .
The quotient r = I/S0 is called the interest rate or nominal interest
rate and is (unless it is a usury rate!!) less than 1.

Example. S0 = 1000, I = 100, r = 100/1000 = 0.1

Usually r is expressed as a percentage:
0.1 = 0.10 = 10/100 = 10%. In general r = p/100 = p%.

So: S1 = S0 + rS0 = S0(1+ r) = fS0 and f = 1+ r is called the
accumulation factor.



The inverse problem, even if it is exactly equivalent, is interesting
and deserves special names.
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S0 =
S1

1+ r
= S1d , where d =

1
1+ r

.

The number d is called the discount factor or actualization factor.



Example. (Here and in all future examples we’ll take the year as time
unit, so “r ” is called the annual rate of interset).

If the annual interest rate is 9% (r = 0.09), find if it is preferable to have
120 today or 125 after one year.

1. Compare the present values:
The present value of 125 is 125

1+r = 125
1.09 ≈ 115.

2. Compare the future values:
The future value of 120 is 120(1+ r) = 120 · 1.09 ≈ 131.

We can conclude that it is preferable to have 120 today than 125 after
one year.

Observe that, despite the simplicity of this example, it highlights exactly
the very fundamental problem of financial mathematics.



Example. If 120 is the FV of 90 in 1 year, what is r?

120 = 90(1+ r) ⇒ 30 = 90r ⇒ r =
1
3
= 0.33 = 33%.

Example. If 120 is the PV of 150 in 1 year, what is the interest
rate? What is the discount rate?

150 = 120(1+ r) ⇒ 30 = 120r ⇒

r = 0.25 = 25% ⇒ d =
1

1+ r
= 0.8 = 80%.



The usual financial regime is that of “compound interest”, that is
after the first period (year) the interest is added to the principal and
it contributes to produce the new interest for the second year. So:

Initial value: S0 , after 1 year: S1 = S0(1+ r) ,

after 2 years: S2 = S1(1+ r) = S0(1+ r)2.

In general, after t years, the Final Capital will be

St = S0(1+ r)t .



Now suppose that the interest is added to the principal not at the
end of the year, but biannually, that is after six months (so it
contributes to produce new interest) and finally at the end of the
year.

After half a year you have the following amount

S0 + r
S0

2
= S0

(
1+

r

2

)
.

So at the end of the year you’ll have

S1 = S0

(
1+

r

2

)2
.

If the year is divided into n periods the formula obviously becomes,
respectively for one year and for t years,

S1 = S0

(
1+

r

n

)n
and St = S0

(
1+

r

n

)nt
.



When the period is divided in sub-periods the effective rate of
interest I/S0 for the whole period is obviously greater than the
nominal rate of interest. This rate of interest is called Effective rate
of interest and usually denoted with R .

R =
I

S0
=

S1 − S0

S0
=

S0
(
1+ r

n

)n − S0

S0
=
(
1+

r

n

)n
− 1.

Example. If the principal is 1000 and the nominal rate of interest is
9%, in one year the FV would be 1090. If the interest, at the same
nominal rate, is added monthly, that is 12 times a year, the FV ,
after one year, will be:

1000
(
1+

0.09
12

)12

≈ 1094,

and it is as if the rate of interest where 9.4% instead of 9%. In fact

R =

(
1+

0.09
12

)1

2− 1 ≈ 0.094 = 9.4%.



Continuous compounding

Suppose, in the formula

St = S0

(
1+

r

n

)nt
,

that n→ +∞: in this case we’ll speak of continuous compounding.
We obtain

St = S0

[(
1+

r

n

)n/r]rt
= S0

[(
1+

1
n/r

)n/r
]rt

= S0

[(
1+

1
x

)x]rt
,

where x = n/r . As n→ +∞ also x → +∞ and the function under
square brackets tends to the Euler number “e” (this is a
fundamental limit). So

St = S0e
rt .

This is where the “e” number comes from!!



Example. A deposit of 5000 is put into an account earning interest
at the annual rate of 9%. How much will there be in the account
after 8 years if the interest is paid annually, quarterly or
continuously?

Annually: FV = 5000(1+ 0.09)8 ≈ 9963.

Quarterly: FV = 5000(1+ 0.09/4)32 ≈ 10191.

Continuously: FV = 5000e0.09·8 ≈ 10272.



Stream of Cash Flow

A Stream of Cash Flow is a sequence of payments/incomes, a0, a1,
a2, . . . , an, called instalments (or installments in US english), at
certain times t0, t1, t2, . . . , tn, called maturities.



Example. Suppose that three successive payments are to be made
in the amount of 1000, after 1 year, 1500, after 2 years and 2000,
after 3 years. How much must be deposited in an account today in
order to have enough money to cover these three payments if the
annual rate is 11%?
This amount is called the Total Present Value of the payments and
can be simply computed using actualization factors for the three
payments and then summing up:

TPV =
1000

(1+ 0.11)1
+

1500
(1+ 0.11)2

+
2000

(1+ 0.11)3
≈ 3581.

The same pattern can be used to find the Future Value (Total
Future Value), using accumulation factors.



We are only interested in the following situation: the period
between two consecutive maturities is always the same (a year for
example) and the amount of the instalments is a constant value,
say a. In this case the SCF is called a (simple) annuity.
The annuity is ordinary if payments are the end of each period, is
due, if payments are at the beginning of each period.

The sums in these cases are easily computed if we use the formula
for the sum of a geometric progression:

1+ q + q2 + q3 + · · ·+ qn−1 =
1− qn

1− q
.



Ordinary annuity

0 (1, a) (2, a) (n − 1, a) (n, a)

a/(1 + r)
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a/(1 + r)n−1
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a

TFV = a
[
1+ (1+ r) + · · ·+ (1+ r)n−1] = a

r

[
(1+ r)n − 1

]
.

TPV =
a

1+ r

[
1+

1
1+ r

+ · · ·+ 1
(1+ r)n−1

]
=

a

r

[
1− 1

(1+ r)n

]
.



Due annuity
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Exercise. Prove the following.

TPV =
a(1+ r)

r

[
1− 1

(1+ r)n

]
, TFV =

a(1+ r)

r
[(1+ r)n − 1] .


