1 - Solve the system .
The augmented matrix A|b of the system is: ,
which is row equivalent to the reduced row-echelon matrix
B|c: .
The solution of the system is easily found: . The other unknowns are completely arbitrary. This
system has n=6, m=4, r=3, and so
∞6-3=∞3 solutions.
2 - Solve the system , where t is a real number.
The augmented matrix and its reduced form are: . The system is consistent if and only if t=2.
In this case the reduced row-echelon form of the matrix is:
. We read off the unique solution of the system:
. From a geometrical point of view this
result can be interpreted as follows: given two non parallel
straight lines and a third variable straight line, find the
value of t for which this third line has a unique point
in common with the preceding two.
3 - Solve the system , where s and t are real
numbers.
Write the augmented matrix A|b: .
Now start applying Gauss-Jordan algorithm.
;
.
Now we must distinguish between to cases: