Il logo di batmath
www.batmath.it

Sulla definizione di seno e coseno

L'introduzione delle funzioni circolari, a livello elementare, non è agevole e, nella pratica, queste funzioni vengono definite facendo ricorso a concetti facili da intuire, ma non facili da spiegare in maniera rigorosa, tra cui il concetto di senso orario e senso antiorario, che non hanno alcun significato matematico. 

Le funzioni circolari sono in realtà strettamente legate alle funzioni esponenziali, ma questo fatto può essere compreso solo lavorando nel campo complesso. 

É possibile comunque una introduzione sufficientemente "pulita" anche rimanendo nell'ambito reale se si ammette di poter utilizzare i concetti di archi di cerchio e di lunghezza dei medesimi, nonché il fatto che la lunghezza della circonferenza e l'area del cerchio sono date, rispettivamente, dalle formule 2πr e πr2; l'unico problema è che occorre far ricorso al calcolo differenziale. L'idea qui esposta è presa da Barozzi, E., Gonzalez, E., Calculus, Libreria Progetto, Padova 1989.

Procediamo dunque con queste ipotesi e consideriamo, in un sistema di coordinate cartesiane ortogonali, la semicirconferenza di centro l'origine e raggio 1, avente equazione img.

Indichiamo con l(x) la funzione "lunghezza dell'arco" rappresentato nella figura qui sotto. La funzione l ha dominio [-1,1] e gode delle seguenti proprietà: l(1)=0, l(0)=π/2, l(-1)=π. Non ci interessa tanto trovare un'espressione per la funzione, quanto calcolare la sua derivata. Per far questo dobbiamo considerare il rapporto incrementale img e poi far tendere h a zero.

grafico

La dimostrazione che ci proponiamo di fare è basata sul teorema dei carabinieri, per cui intendiamo "incastrare" la quantità di cui vogliamo il limite tra altre due che abbiano lo stesso limite. Cominciamo a considerare h<0 e, con riferimento alla figura qui sotto, indichiamo con A il punto della semicirconferenza di ascissa x, con B quello di ascissa x+h, con C il punto, di ascissa x+h, sulla tangente in A alla semicirconferenza, e osserviamo che si ha: img. Indichiamo con γ la lunghezza dell'arco img. Si ha, come è ben noto, AB<γ.

uso del teorema dei carabinieri

Poiché la circonferenza ha raggio 1, l'area del settore circolare OAB vale γ/2 e tale area risulta minore di quella del triangolo OAC che vale AC/2.  Ne segue γ<AC. Dunque AB<l(x+h)-l(x)<AC. Tenendo conto che h<0 possiamo concludere che:

img.

Se si calcolano i limiti dei due "carabinieri", img e img, si ottiene il valore comune img.

Un discorso perfettamente identico si può fare se h>0 (basterà qualche semplice adattamento). Si può quindi concludere che

img.

Il calcolo di questa derivata ci consente di affermare che la funzione l è strettamente decrescente (la cosa è, d'altro canto, evidente anche a livello intuitivo) nel suo dominio, per cui risulterà invertibile. Ciò significa che, per ogni s dell'intervallo [0,π] , esiste un unico x dell'intervallo [-1,1], tale che l(x)=s. Chiameremo funzione coseno, che indicheremo semplicemente con cos, l'inversa della funzione l, cioè porremo, per definizione,

img.

Definiremo poi la funzione seno, che indicheremo semplicemente con sin, con lo stesso dominio e codominio del coseno, mediante la posizione:

img.

La regola di derivazione della funzione inversa ci consente di ricavare facilmente che:

img.

Assieme alla formula img, che si ricava banalmente dalla definizione, questo è quello che conta sapere sulle funzioni seno e coseno.

Si possono prolungare le funzioni all'intervallo [-π,0], ponendo cos(-s)=cos(s)  e sin(-s)=-sin(s). Per avere funzioni definite su tutto l'insieme dei reali è poi possibile estenderle per periodicità. Per le funzioni così ottenute si usa ancora lo stesso nome di funzione seno e coseno.

Per concludere lo studio delle funzioni seno e coseno occorre naturalmente ricavare le formule di addizione e sottrazione, in particolare la formula cos(x-y)=cos(x)cos(y)+sin(x)sin(y), da cui poi tutte le altre si possono ricavare. Il problema si può ricondurre a quello di mostrare che la funzione coseno è l'unica che soddisfa alle condizioni: img. Per chi vuole approfondire l'argomento rimandiamo al citato testo di Barozzi Gonzalez. Qui ci preme segnalare solo che questo modo di procedere, seppure un po' pesante dal punto di vista formale, consente un'introduzione abbastanza pulita delle funzioni trigonometriche rimanendo nell'ambito reale e, soprattutto, consente di introdurre queste funzioni senza mai far ricorso al concetto di angolo: nelle applicazioni il fatto che la trigonometria possa anche servire a "risolvere" certi problemi sui triangoli è un fatto, tutto sommato, piuttosto secondario. Anzi la cosa essenziale è proprio il fatto che la funzione coseno è l'unica funzione, con opportune condizioni iniziali, la cui derivata seconda è opposta alla funzione stessa: si pensi per esempio all'equazione differenziale dei moti armonici, da cui hanno origine praticamente tutte le applicazioni delle funzioni trigonometriche.

pagina pubblicata il 01/12/2000 - ultimo aggiornamento il 01/09/2003