Il logo di batmath
www.batmath.it
pag.precedente | pag.successiva

Funzioni irrazionali

Si chiamano irrazionali quelle funzioni in cui la variabile figura sotto il segno di radice. Per esempio è irrazionale img, non è irrazionale img (si tratta di un binomio di primo grado!).

É importante mettere subito in evidenza il fatto che non esistono regole generali per risolvere le disequazioni irrazionali o per trovare il segno di funzioni irrazionali. A nostro avviso non conviene imparare le "regole" che sono proposte in molti testi, in quanto si riferiscono solo ad alcuni casi particolari e si dimenticano quasi subito (supposto che qualcuno abbia avuto voglia di impararle!).

Le disequazioni irrazionali - risoluzione per via algebrica

La risoluzione per via algebrica si basa sull'idea di trasformare la disequazione irrazionale in un'altra, ad essa equivalente, in cui la variabile non compaia più sotto radice. Per fare questo occorre elevare ambo i membri della disequazione ad una opportuna potenza. Purtroppo però, come già osservato, l'elevazione a potenza (in particolare ad una potenza pari) non è di solito lecita. Inoltre l'elevazione a potenza può complicare il problema anzichè semplificarlo. Consideriamo per esempio la disequazione: img. Se, dopo aver trovato il dominio (x≥0), elevo al quadrato (trascurando -per il momento- i problemi connessi con questa operazione) ottengo:  img, che è più complessa della precedente e in cui la variabile compare ancora sotto radice. Se invece trasformo la disequazione in img e poi elevo al quadrato (anche qui trascurando -per il momento- i problemi connessi con questa operazione), ottengo img, che è di secondo grado e quindi di facile risoluzione. Si deve quindi procedere con la massima cautela, valutando accuratamente le varie possibilità .

punto esclamativo Consigliamo di procedere nel seguente modo:

  • Trovare il dominio
  • Valutare la miglior forma possibile della disequazione in modo che un'eventuale elevazione ad una opportuna potenza semplifichi i calcoli.
  • Nel caso sia necessario elevare ad una potenza pari, esaminare il segno dei due membri, tenendo conto che l'elevazione è consentita solo se ambi i membri sono positivi. Se uno dei due membri è negativo le conclusioni sono immediate. Se sono entrambi negativi, basta cambiare di segno (e di verso!).

Alcuni esempi chiariranno il metodo da seguire.

Esempio 1. Risolvere la disequazione img.

Si conclude che l'insieme delle soluzioni è: S =  ]-∞,2] unione [7,+∞[, o, equivalentemente, x ≤ 2 unione x ≥ 7.

Esempio 2. Risolvere la disequazione img.

Tenendo conto del dominio si trova l'insieme di soluzioni S =  ]-3 , 3/2], ovvero -3 < x ≤ 3/2.

Esempio 3. Risolvere la disequazione img.

Esempio 4. Risolvere la disequazione img.

Tenendo conto del dominio trovato si conclude che l'insieme di soluzioni è: S = [3,7[, ovvero 3 ≤ x < 7.

Esempio 5. Risolvere la disequazione img. In questo caso non ci sono problemi né con il dominio né con l'elevazione al cubo (sempre possibile). Si ottiene facilmente: -x3 - x + 20. Scomponendo in fattori si ottiene img, il cui insieme di soluzioni è S = ]-∞,1], ovvero x ≤ 1.

link a top pagina

Le disequazioni irrazionali - risoluzione grafica

Per le disequazioni irrazionali la risoluzione per via grafica è particolarmente utile, sia come metodo proprio sia per controllare i risultati ottenuti per via algebrica (dove è molto facile sbagliare qualche calcolo!) per la semplicità con cui possono essere ottenuti grafici anche complessi utilizzando i computer o semplici calcolatrici tascabili.

Se riprendiamo in esame la disequazione sopra considerata img, e tracciamo il grafico della funzione a primo membro, con un qualunque programma (Derive™, Maple™, Mathematica™, o addirittura l'onnipresente Cabri, come abbiamo fatto noi), possiamo immediatamente controllare la bontà del risultato che abbiamo ottenuto per via algebrica. In questo caso il grafico ci fornisce anche immediatamente le soluzioni, senza alcun ulteriore calcolo.

grafico

Se volessimo essere pignoli e ottenere il grafico con i tradizionali metodi dell'analisi non ci sarebbe alcuna difficoltà. Questo stesso risultato può però essere ottenuto per via grafica anche con metodi più "elementari", con le seguenti considerazioni. 

Riscritta la disequazione nella forma img, e considerate le funzioni che stanno a primo e secondo membro, possiamo risolvere la disequazione esaminando il seguente sistema: img: si tratta di trovare i valori di x per cui il primo grafico sta sopra il secondo. Il secondo grafico è una retta, tracciabile per via elementare. Il primo può essere tracciato utilizzando la teoria delle coniche. Infatti da img possiamo ottenere il seguente sistema img  o, meglio, img. La seconda equazione rappresenta una conica di cui dobbiamo prendere solo la parte compresa nel primo e secondo quadrante (y0). Si ottiene il grafico finale riportato qui sotto, da cui, naturalmente, si traggono sempre le stesse conclusioni.

grafico

Il grafico in blu rappresenta la conica, quello in rosso la retta. Naturalmente, come più sopra accennato, della conica abbiamo considerato solo la parte nel primo e secondo quadrante.

La tecnica "elementare" qui utilizzata può essere applicata a tutte le disequazioni irrazionali del tipo img, se f e g sono polinomi al massimo di secondo grado. Nel caso che g sia di primo grado le intersezioni tra le due curve possono anche essere trovate analiticamente (intersezioni tra una conica e una retta), se invece g è di secondo grado non è detto che le intersezioni possano essere trovate analiticamente (intersezioni tra una conica e una parabola): in ogni caso la rappresentazione grafica fornisce importanti informazioni sulle soluzioni della disequazione.

Consideriamo, per chiarire le idee, un altro esempio. Si debba risolvere la seguente disequazione: img. Procedendo come nell'esempio precedente otteniamo il sistema: img. Il primo grafico è lo stesso di prima, mentre il secondo è una parabola: si tratta di trovare i punti per cui l'iperbole "sta sopra" la parabola. 

Sempre con Cabri abbiamo ottenuto i grafici qui sotto. Se ne deduce facilmente che la disequazione è verificata per  α < x < 2. Per determinare il valore di α dovremmo trovare le radici del polinomio che si ottiene quadrando ambo i membri dell'equazione img, e cioè del polinomio di quarto grado: img. Purtroppo solo radice x=2 è razionale mentre le altre tre no. Di queste ci interessa solo α, perché le altre due stanno nella parte di iperbole che non fa parte del nostro grafico. 

grafico

Anche il grafico qui sotto, ottenibile con le usuali tecniche dell'analisi o, molto più velocemente, con uno dei programmi di grafica indicati sopra, consente di trarre le stesse conclusioni. Da entrambi i grafici si può ottenere anche una stima del valore di α, che risulta essere compreso tra -4 e -3. Stime più precise si possono ottenere zoomando sui grafici o con le usuali tecniche dell'analisi numerica. In ogni caso la tecnica grafica fornisce preziosi indicazioni di prima approssimazione, senza molta fatica.

grafico

link a top pagina

Il segno di una funzione irrazionale

Per ottenere il segno di una funzione irrazionale si può procedere con la tecnica generale indicata. Occorre prestare molta attenzione al fatto che, una volta trovato il dominio e l'insieme dove f(x) > 0, non è sempre agevole concludere immediatamente: per questo tipo di funzioni (a differenza di quello che succede con i polinomi) l'insieme dei punti dove f(x)=0 può essere molto complesso e non essere costituito da punti isolati. Anche in questo caso una rappresentazione grafica può essere di grande aiuto. Chiariamo il fatto con alcuni esempi.

Esempio 1
Determinare il segno di:  img. Il grafico di seguito mostra subito che 

Si provi a risolvere il problema per via algebrica per un utile confronto.

grafico

Esempio 2
Determinare il segno di:  img. Il grafico di seguito mostra subito che 

grafico

Se non si conosce la funzione valore assoluto è meglio evitare di tentare la soluzione di questo problema per via algebrica!.

link a top pagina

pag.precedente | pag.successiva
pagina pubblicata il 02/09/2002 - ultimo aggiornamento il 01/09/2003